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1 Cookbook for causal inference observers

We describe here a fairly general recipe for building an observer model for causal inference in multisensory
perception. We consider the most common case of two sensory modalities (see [1] for work on three
modalities). Stimuli take value on some one-dimensional physical continuum, such as location or heading
direction.1 The observer model is designed to apply to three types of tasks:

• Unisensory estimation/discrimination: The observer is presented with one stimulus from either
modality, and is asked to report the value of the stimulus (or how the stimulus compares to a given
reference).

• Bisensory estimation/discrimination: The observer is presented with two stimuli from different
modalities, and is asked to report the value of either one, or of both (or how one of the stimuli, or
both, compare to a given reference). Also referred to as implicit (causal) inference.

• (Bisensory) unity judgement : The observer is presented with two stimuli from different modalities,
and is asked whether they were perceived as having the same value/source. Also referred to as
explicit (causal) inference.

Depending on the experimental setup, the bisensory estimation/discrimination and unity judgment tasks
might be performed in the same trial (a ‘dual task’ setup; see for example [2, 3]).

Our construction makes the following assumptions:

• When two stimuli are presented in the same trial, the observer follows a ‘causal inference strategy’
to decide whether the stimuli belong to a common cause (C = 1) or not (C = 2).

• Conditioned on a given causal scenario (C = 1 or C = 2), or in the unisensory task, the observer
performs the estimation/discrimination task according to Bayesian inference.

• When responding, the observer might exhibit additional suboptimalities, such as lapsing and cue
switching.

A specific observer model is built by picking four model components (also called model factors): (1)
a sensory noise model; (2) a prior over stimuli; (3) a causal inference strategy; and (4) additional sources
of suboptimality.

1 With the risk of stating the obvious, we remark that stimulus value here is the quantity associated with the stimulus
continuum and has nothing to do with ‘value’ in value-based decision making.
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1.1 Pick a sensory noise model

For each modality ‘mod’, pick a sensory noise model for the observer. The common assumption is a
Gaussian measurement noise distribution of the form

p(xmod|smod) = N
(
xmod|smod, σ

2(smod)
)
, (S1)

where xmod is the noisy measurement, smod the stimulus value, N
(
x|µ, σ2

)
is a normal distribution with

mean µ and variance σ2, and the function σ2(smod) > 0 encodes how the variance of measurement noise
depends on the stimulus value, which is a feature of the sensory domain. Common shapes could be a
constant noise, or alternatively noise that grows proportionally to |smod| (∼ Weber’s law). The are no
constraints on the shape of σ2(smod) besides positivity and, arguably, continuity.

Eq. S1 is suitable for unbounded stimulus domains, or circular domains (such as orientation, or
heading direction) with small angles, which effectively behave as unbounded domains. For an actually
circular stimulus domain, we replace Eq. S1 with a wrapped normal distribution

p(xmod|smod) =

∞∑
k=−∞

N
(
xmod|smod + 360◦k, σ2(smod + 360◦k)

)
, smod ∈ [−180◦, 180◦) (S2)

which, for σ(smod) < 360◦, is very well approximated by only three components k = −1, 0, 1. An
alternative to Eq. S2 is to use a von Mises (i.e., circular normal) distribution; we show in Section 3 that
the two choices are essentially equivalent.

1.1.1 Measurement distribution and likelihoods

We use Eqs. S1 (or S2) both for the sensory measurement noise distribution, that is the generative
process of measurement xmod for a given stimulus smod in the experiment, and for the observer’s sensory
likelihood used in the inference process of the posterior probability over smod for a given measurement
xmod. According to Bayes’ rule, for the example of a unisensory stimulus, the latter takes the form

p(smod|xmod) =
p(xmod|smod)pprior(smod)∫

p(xmod|s′mod)pprior(s′mod)ds′mod

(S3)

where pprior(smod) is the prior over unisensory stimuli (see Section 1.2), and here p(xmod|smod) is the
likelihood.

Previous computational work has modified the equation of the measurement distribution by including
terms, such as a scaling factor in front of xmod, not reflected in the likelihood. This form of model
mismatch has the effect of introducing explicit biases in subjects’ percepts.2 The rationale for this ad-
hoc modification of the measurement distribution is that such biases are observed experimentally, see
for example [4, 5] in the case of heading estimation. In our construction, instead, we follow the common
practice in Bayesian psychophysics of assuming that biases in the observers’ performance emerge implicitly
and normatively from the interaction between statistics of the stimuli (i.e., priors) and precision of the
sensory apparatuses (i.e., likelihoods) [6, 7]. Recent theoretical work has shown that this might agree
with encoding of stimuli in neural populations [8, 9]. In particular, as demonstrated in these studies,
priors will generally induce ‘attractive’ biases, whereas stimulus-dependent noise distributions (and, thus,
likelihoods) can induce both ‘attractive’ and ‘repulsive’ biases. For this reason, we do not force biases by
hand in the formulation of the sensory noise distribution, but this should not be mistaken for a lack of
biases in the performance of our observer models.

2 Note that if the same modifications were included in both measurement distribution and likelihood, they would ‘cancel
out’ in the inference.
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The fact that we use the same expressions (and parameters) for both the sensory measurement dis-
tribution and the likelihood is equivalent to saying that observers implicitly know their own noise model
(that is, how noise changes as function of other parameters of the task, such as reliability and stimulus
eccentricity). This modeling choice is motivated both by experimental work that shows trial-to-trial
reweighing of multisensory cues [10–12] and by theoretical reasons, in that models in which noise (e.g.,
variance of measurement distributions) and beliefs about noise (e.g., ‘variance’ in the likelihoods) are
decoupled may suffer from a lack of identifiability, unless the experiment is designed to avoid such is-
sues [13].

1.2 Pick a prior over stimuli

The observer will have a prior over stimuli in the unisensory and bisensory conditions. A common choice
for the prior is an independent, identical Gaussian prior across modalities for stimuli s1 and s2,

pprior(s1, s2|C = 2) = N
(
s1|µprior, σ

2
prior

)
N
(
s2|µprior, σ

2
prior

)
(S4)

where µprior is the mean of the prior (which might represent a global bias, often assumed to be zero), and
σ2

prior represents the width of the prior (the wider the prior, the lesser its influence on behavior). The
same prior is then applied to the common cause scenario and unisensory cases,

pprior(s|C = 1) = N
(
s|µprior, σ

2
prior

)
. (S5)

This simple prior induces a ‘compression’ or ‘regression to the mean’ bias as observed in many psy-
chophysical experiments [14].

Another possibility is that the observer develops a prior (approximately) based on the empirical
distribution of stimuli presented in the experiment, which may differ from Eqs. S4 and S5.

1.3 Pick a causal inference strategy

The causal inference strategy defines how the observer decides on the hypotheses C = 1 and C = 2 when
presented with two stimuli. In general, the causal inference strategy may or may not be Bayesian, can be
deterministic or stochastic, and might dictate to combine the two causal scenarios (e.g., by performing a
weighted average of C = 1 and C = 2). This strategy also determines what the observer would report in
an explicit, unity-judgment task.

1.3.1 Bayesian causal inference strategies

A Bayesian strategy will compute the posterior probabilities of the two causal scenarios, given the two
noisy measurements x1, x2, as follows,

p(C|x1, x2) ∝ p(x1, x2|C)p(C)

= p(C)

∫
p(x1, x2, s1, s2|C)ds1ds2

= p(C)

∫
p(x1|s1)p(x2|s2)pprior(s1, s2|C)ds1ds2,

(S6)

where p(C) represents the prior belief of a common or separate cause, with p(C = 1) = 1−p(C = 2) ≡ pc.
While pc should typically stem from the statistics of the task, it is general practice to keep it as a free
parameter of any Bayesian model, since subjects tend to exhibit a wide spectrum of beliefs about the
probability of a common cause (see Fig 2 in [15]).

Different variants of Bayesian observers will use the posterior over causal scenarios differently to
respond to estimation/discrimination task. Typical models are Bayesian model averaging (average the
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estimates of C = 1 and C = 2, weighted by their posterior probability), Bayesian model selection
(pick the estimate of either C = 1 or C = 2, based on which one has the larger posterior probability), or
Bayesian probability matching (pick either scenario stochastically, with probability equal to their posterior
probability).

For the unity judgment task, the standard Bayesian strategy is to respond with the scenario (C = 1
or C = 2) with highest posterior probability. Another possibility is posterior probability matching, that
is pick either scenario stochastically, with probability equal to their posterior.

1.3.2 Non-Bayesian causal inference strategies

The main feature of a non-Bayesian strategy is that it does not compute a posterior distribution over
causal scenarios, but uses instead (usually simpler) heuristics as a decision rule to whether C = 1 or
C = 2.

A typical heuristic of this kind stipulates that C = 1 whenever the two noisy measurements x1, x2

are closer in value than some criterion κ, that is |x1 − x2| < κ. If κ is fixed for all experimental
conditions, we call this a fixed-criterion causal inference strategy [16]. If κ is allowed to change for
different experimental conditions, and in particular as a function of stimulus reliability, then the decision
rule becomes ‘probabilistic’, that is uncertainty-dependent [17].

A fixed-criterion strategy that discards reliability information might seem to clash with the assumption
that observers know the stimulus reliability when combining cues. However, there is neural evidence
that sensory integration (that is forced fusion, with reliability-dependent weighing) and causal inference
happen in different brain areas [18]. For this reason, it is not obvious that reliability information would be
automatically available to higher areas, or that it would be used in the correct way. Fixed-criterion models
represent a valid ‘null’ alternative for a class of models in which reliability information is unavailable (or
corrupted) at the causal inference stage.

1.3.3 Non-causal inference strategies

Extreme cases of causal inference strategies are observers that do not quite perform causal inference at
all.

In this case, an observer might use a forced fusion strategy that always combines cues (C ≡ 1), or,
alternatively, a forced segregation strategy that always segregates them (C ≡ 2). Mathematically, these
strategies can be considered as limiting cases of previously presented causal inference strategies. For
example, forced fusion is equivalent to a Bayesian causal inference strategy with pc → 1, or a fixed-
criterion strategy with κ→∞. Analogously, forced segregation is equivalent to a Bayesian strategy with
pc → 0, or a fixed-criterion strategy with κ→ 0.

As a generalization of forced fusion/segregation, we can consider a stochastic fusion strategy that
on each trial has probability η of deciding C = 1, and C = 2 otherwise, where η might depend on the
experimental condition.

1.4 Pick other sources of suboptimality

Experimental subjects will often exhibit additional sources of variability, which might be included explic-
itly in the model. Here we consider lapses and cue switching.

A common feature of many psychophysical models is a lapse rate, that is the probability λ that the
observer gives a completely random response (typically, uniform over the range of possible responses) [19].

Another form of error for multisensory perception experiments is that the observer switches modal-
ity, that is in a bisensory estimation/discrimination task they respond about the wrong modality with
switching rates ρ1→2 and ρ2→1, respectively for responding with the second modality when asked about
the first, and vice versa. Note that the switching rate can be used to implement suboptimal strategies
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such as cue capture, whereby all responses are absorbed by a single modality: pick the ‘forced segregation’
causal inference strategy, then set, say, ρ2→1 = 1 and ρ1→2 = 0, if responses are supposed to be captured
by the first modality. Similarly, by picking ‘forced segregation’ with nonzero ρ1→2 and ρ2→1, one can
implement a switching strategy observer [20].

2 Observer model factors

In this section we describe details of the factors used to build the observer models in the paper.

2.1 Sensory noise

For a given modality mod ∈ {vis, vest}, the measurement noise distribution follows Eq. S1. Note that
for a visual stimulus the measurement distribution and the variance in Eq. S1 also depend on the visual
coherence level cvis in the trial, such that σ2(svis) ≡ σ2(svis, cvis), but in the following we omit this
dependence to simplify the notation.

For the variance we consider two possible models,

σ2(smod) =

 σ2
0mod (constant)

σ2
0mod

{
1 + 2w2

mod

(
90◦

π

)2 [
1− cos

(
smod

90◦ π
)]}

(eccentricity-dependent)
(S7)

where σ2
0modality is the base variance and wmod is related to the Weber fraction near 0◦. In fact, for small

values of smod, Eq. S7 reduces to σ2(smod) ≈ σ2
0mod

(
1 + w2

mods
2
mod

)
, which is a generalized Weber’s

law.3

The broad shape of the chosen periodic formula for the eccentriticy-dependent noise model, which
peaks at ±90◦, derives from empirical results in a visuo-vestibular task with the same apparatus with
human and monkey subjects (see Fig 2 in [4]; see also [22]). We note that our noise shape differs from
that adopted in other works (with different setups), which used a sinusoidal with twice the frequency
that peaks at ±45◦,±135◦ [23,24]. Since in our setup the heading directions were restricted to the ±45◦

range (with most directions in the ±25◦ range), the exact shape of periodicity is largely irrelevant, but
understanding differences in noise models may be important for experiments with wider heading direction
ranges.

For the paper, we implemented the measurement distribution (and, thus, the stimulus likelihood in
the inference process) as a mixture of three wrapped Gaussians (Eq. S2). However, we found that, due to
the limited range of directions in our experiment, a single Gaussian was sufficient. Note that our choice
of using Gaussians rather than von Mises (circular normal) distributions yields no loss of generality in
practice, as we demonstrate in Section 3.

All constant noise models have four parameters (σ0vest, and a separate σ0vis for each visual coherence
level, low, medium and high). Eccentricity-dependent models have two additional parameters, wvest and
wvis (the latter is common to all visual stimuli, to prevent overfitting).

2.2 Prior

For unisensory trials, we assume that observers have a unimodal symmetric prior over heading directions,
peaked at 0◦ (the exact shape is irrelevant). Due to the form of the decision rule for the left/right
discrimination task, such prior has no influence over the observer’s response, which only depends on
whether the noisy measurement falls to the left or to the right of straight ahead.

3 Here by Weber’s law we simply denote the fact that noise scales proportionally to stimulus magnitude, that is σ(s) ∝ |s|.
Technically, Weber’s law is defined only for quantity-related continua, whereas heading is a quality-related continuum [21].
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For bisensory trials (both unity judgment and inertial discrimination tasks), we consider two alterna-
tive models for priors. The empirical prior consists of an approximation of the actual prior used in the
experiment, that is

p(svis, svest|C = 1) ∝
∑

(s,s)∈S

N
(
s|0, σ2

prior

)
δ(svis − s)δ(svest − s)

p(svis, svest|C = 2) ∝
∑

(si,sj)∈S
si 6=sj

N
(
svis + svest

2
|0, σ2

prior

)
N
(
svest − svis|0,∆2

prior

)
δ(svis − si)δ(svest − sj)

(S8)

where S is the discrete set of pairs of visual and vestibular headings in the experiment. The two equations
consider respectively only diagonal elements (equal heading directions, C = 1) or off-diagonal elements
(different directions, C = 2) of Fig 1B in the main text. The approximation here is given by the two
Gaussian distributions (defined on the discrete set), which impose additional shrinkage for the mean of
the stimuli (governed by σ2

prior) and for the disparity (governed by ∆2
prior). For σ2

prior,∆
2
prior → ∞, Eq.

S8 converges to the distributions of directions used in the experiment for C = 1 and C = 2.
Alternatively, we consider an independent prior, that is

p(svis, svest|C = 1) =

∫
N
(
s|0, σ2

prior

)
δ(svis − s)δ(svest − s)ds

p(svis, svest|C = 2) =N
(
svis|0, σ2

prior

)
N
(
svest|0, σ2

prior

) (S9)

which assumes observers build a single prior over heading directions which is applied independently to
both modalities [25]. The first integral is a formal way to impose s ≡ svis = svest.

We note that a continuous approximation of Eq. S8 may seem more realistic than the adopted discrete
distribution of directions. However, an observer model with a correlated, continuous prior is computation-
ally intractable since evaluation of the log likelihood involves a non-analytical four-dimensional integral,
which increases the computational burden by an order of magnitude. As a sanity check, we implemented
observers that use a continuous approximation of Eq. S8 and verified on a subset of observers and models
that results of model fits and model predictions were indeed nearly identical to the discrete case.

Independent prior models have one parameter σprior for the width of the prior over headings. Empirical
prior models have an additional parameter ∆prior for the width of the prior over disparities.

2.3 Causal inference strategy

The basic causal inference strategies: Bayesian, fixed-criterion and fusion are described in the main text.
We report here some additional definitions and derivations.

All integrals in this section are in the [−90◦, 90◦] range, unless noted otherwise. The rationale of
such integration range for our experiment is that subjects were informed that the movement was forward
(either left or right of straight-forward). Moreover, due to the relatively narrow range of stimuli used in
our experiment, we found with preliminary analyses that beliefs more than 90◦ away from straight-ahead
had negligible influence on left/right decisions. In the more general case of stimuli distributed along the
full circle, the integration range should go to ±180◦. For a non-circular dimension, appropriate empirical
bounds should be chosen (e.g., the width of the projection screen for a localization task).

Posterior probability of causal structure

For a Bayesian observer, the posterior probability of common cause is

Pr(C = 1|xvest, xvis, cvis) ∝ p(xvis, xvest, cvis|C = 1) Pr(C = 1)
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where Pr(C = 1) ≡ pc, the prior probability of a common cause, is a free parameter of the model. Then

p(xvis, xvest, cvis|C = 1) =

= Pr(cvis)

∫ ∫
p(xvis|svis, cvis)p(xvest|svest)p(svis, svest|C = 1)dsvisdsvest,

(S10)

where the likelihoods are defined by Eq. S1, the prior is defined by Eqs. S8 and S9, and Pr(cvis) = 1
3 .

For the independent prior case we can further simplify

p(xvis, xvest, cvis|C = 1) ∝
∫
p(xvis|svis = svest, cvis)p(xvest|svest)N

(
svest|0, σ2

prior

)
dsvest,

whereas the solution for the empirical prior is similar, but with a sum over the discrete stimuli such that
svis = svest.

Conversely, the posterior probability of separate causes is

Pr(C = 2|xvis, xvest, cvis) ∝ p(xvis, xvest, cvis|C = 2) (1− pc) ,

where

p(xvis, xvest, cvis|C = 2) = Pr(cvis)

∫ ∫
p(xvis|svis, cvis)p(xvest|svest)p(svis, svest|C = 2)dsvisdsvest, (S11)

which for the independent prior becomes

p(xvis, xvest, cvis|C = 2) ∝
(∫

p(xvis|svis, cvis)pprior(svis)dsvis

)
·
(∫

p(xvest|svest)pprior(svest)dsvest

)
,

that is the product of two one-dimensional integrals. For the empirical prior Eq. S11 does not simplify,
but becomes a discrete sum over S (see Eq. S8).

Posterior probability of left/right discrimination (C = 1)

In bisensory inertial discrimination trials the observer may implicitly contemplate two scenarios: that
there is only one common cause (C = 1), or that there are two distinct causes (C = 2). We consider
inference in the two separate scenarios, and then see how the observer can combine them.

For C = 1, the observer’s posterior probability density over over the inertial heading direction is

p (svest|xvis, xvest, cvis, C = 1) =

=

∫
p(svis, svest, xvis, xvest, cvis, C = 1)

p(xvis, xvest, cvis, C = 1)
dsvis

=

∫
p(svis, svest, xvis, xvest, cvis|C = 1) Pr(C = 1)

p(xvis, xvest, cvis|C = 1) Pr(C = 1)
dsvis

∝
∫
p(xvest|svest)p(xvis|svis, cvis)p(svis, svest|C = 1)dsvis

(S12)

which for the independent prior becomes

p (svest|xvis, xvest, cvis, C = 1) ∝ p(xvest|svest)p(xvis|svis = svest, cvis)N
(
svest|0, σ2

prior

)
and the solution is similar for the empirical prior, constraining svest to take only the discrete values used
in the experiment for C = 1.
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Posterior probability of left/right discrimination (C = 2)

For C = 2, the observer’s posterior over inertial heading is

p (svest|xvis, xvest, cvis, C = 2) =

=

∫
p(svis, svest, xvis, xvest, cvis, C = 2)

p(xvis, xvest, cvis, C = 2)
dsvis

∝
∫
p(xvest|svest)p(xvis|svis)p(svis, svest|C = 2)dsvis

(S13)

which for the independent prior can be further simplified as

p (svest|xvis, xvest, cvis, C = 2) ∝ p(xvest|svest)N
(
svest|0, σ2

prior

)
,

whereas for the empirical prior the integral in Eq. S13 becomes a sum over discrete pairs of heading
directions used in the experiment.

Posterior probability of left/right discrimination (C unknown)

If the causal structure is unknown, a Bayesian observer that follows a ‘model averaging’ strategy marginal-
izes over possible causal structures (here, C = 1 and C = 2) [25]. The observer’s posterior probability
density over the inertial heading direction is

p (svest|xvis, xvest, cvis) =

=
∑
C=1,2

∫
p(svis, svest, xvis, xvest, cvis, C)

p(xvis, xvest, cvis)
dsvis

=
1

p(xvis, xvest, cvis)

[∫
p(svis, svest, xvis, xvest, cvis, C = 1)dsvis+∫

p(svis, svest, xvis, xvest, cvis, C = 2)dsvis

]
=
p(xvis, xvest, cvis, C = 1)

p(xvis, xvest, cvis)
p(svest|xvis, xvest, cvis, C = 1)+

p(xvis, xvest, cvis, C = 2)

p(xvis, xvest, cvis)
p(svest|xvis, xvest, cvis, C = 2)

= Pr(C = 1|xvis, xvest, cvis) · p(svest|xvis, xvest, cvis, C = 1)+

Pr(C = 2|xvis, xvest, cvis) · p(svest|xvis, xvest, cvis, C = 2)

(S14)

where p(svest|xvis, xvest, cvis, C) has been defined in the previous subsections and Pr(C|xvis, xvest, cvis) is
the posterior over causal structures.

We generalize Eq. S14 as

p (svest|xvis, xvest, cvis) =v1(xvis, xvest, cvis) · p(svest|xvis, xvest, cvis, C = 1)+

v2(xvis, xvest, cvis) · p(svest|xvis, xvest, cvis, C = 2)

where vk(xvis, xvest, cvis), for k = 1, 2, are the posterior causal weights assigned by the observer to the
two causal structures, with v2(xvis, xvest, cvis) = 1− v1(xvis, xvest) and 0 ≤ v1(xvis, xvest, cvis) ≤ 1. For a
Bayesian observer, the causal weights are equal to the posterior probabilities (Eq. S14); in the main text
we describe other models.



10

2.4 Suboptimalities

For all our observer models, we considered a lapse rate λ. Due to the format of our bisensory discrimi-
nation data (i.e., only inertial left/right responses), which limits the identifiability of switching models,
we did not consider a switching rate, leaving that to future work.

2.5 Model parameters

All models except stochastic fusion have five parameters θdefault by default: three visual base noise
parameters σ0vis(chigh), σ0vis(cmed), and σ0vis(clow); a vestibular base noise parameter σ0vest; and a lapse
rate λ.

Observer model Parameters #
Bayesian (unisensory only) θdefault 5
Bayesian causal inference θdefault, σprior, pc 7
Fixed-criterion causal inference θdefault, κc 6
Fusion causal inference θdefault 5
Stochastic fusion (unity judgment only) ηhigh, ηmed, ηlow 3
Add-ons
with eccentricity-dependent noise + {wvis, wvest} +2
with empirical priors (Bayesian) + {∆prior} +1
with empirical priors (non-Bayesian) + {σprior,∆prior} +2

3 Comparison between wrapped normal and von Mises noise

In the presentation of our general causal inference observer model, and in the manuscript, we assumed that
measurement noise distributions took the shape of (wrapped) normals (see Eqs. S1 and S2). Moreover, for
wrapped normals, we advocated that three mixture components (k = 0,±1) are sufficient. Our modeling
proposal differs from the typical choice of using von Mises (circular normal) distributions for circular
variables (see for example [23,24]). Here we test whether our choice is sensible and generally applicable,
by asking whether there is a practical difference between using von Mises and wrapped normals, for
experiments with stimuli over the entire circular domain.

First, we note that, qualitatively, the von Mises and wrapped normals have very similar properties.
They are both bell-shaped distributions over the circle, and they are both related to the normal distri-
bution. von Mises distributions are the maximum-entropy distributions over the circle, so theoretically
more appealing, but on the other hand wrapped normals, especially as a mixture of three Gaussians (one
at the mean, the other two at ±360◦ from the mean), have computational advantages. It remains to
be established whether these distributions differ quantitatively in an empirically meaningful way. In the
following analyses, we always consider wrapped normals approximated with three mixture components.

3.1 Theoretical comparison

To answer this question theoretically, we assess the difference between the two noise distributions by
computing the Kullback-Leibler (KL) divergence between a von Mises distribution with a given concen-
tration parameter κ and the best approximating wrapped normal (this construction assumes that the
true underlying distribution is a von Mises, but the results are similar after inverting the role). The
KL-divergence represents the expected difference in log likelihood between the two noise models per trial
(assuming the data were generated from a von Mises). Thus, the inverse of the KL-divergence can be
taken as a ballpark of the minimum number of samples required to empirically see a difference between
the two models (that is, one point of log likelihood of difference summed over trials). We call this quantity
the identifiability threshold.



11

As expected, for large values of κ (when the von Mises converges to a normal distribution) and for small
values of κ (when the von Mises converges to a uniform distribution over the circle), the identifiability
threshold between wrapped normal and von Mises is way over 103, and even 104, meaning that several
thousand trials would be needed to distinguish the two models (assuming no other confounding elements).
However, there is a range of values of κ, around ≈ 50-60 (that is, a circular SD of ≈ 7◦), in which the
identifiability threshold drops to ≈ 60-100. This analysis tells that, at least in some cases, the models
could be distinguished within a large but feasible amount of trials. Whether the two noise models can be
distinguished in practice is an empirical question, since in real data differences in the noise models will be
obfuscated by other details. Moreover, it is possible that neither model is the true one (but they could be
both equally good at approximating the true model). Finally, subjects’ typical parameters might reside
in ranges in which the two distributions are not empirically distinguishable.

3.2 Empirical comparison

To answer this question empirically, we took the data from a recent paper on causal inference in mul-
tisensory heading estimation [24]. For all subjects (17 datasets between Experiment 1 and 2, 400-600
trials per dataset), we fit the unisensory data (four conditions: one visual and three inertial) using the
basic modeling framework described in the section “Analyses of Unisensory Data” of [24]. One minor
difference with their analysis is that, as a principled way of dealing with outliers, we added for each
subject a lapse rate parameter, shared across conditions (instead of discarding data points more than
three standard deviations away from the mean). The lapse rate represents the probability of a completely
random response (e.g., due to a missed stimulus, or a mistake in the response).

Crucially, we considered two models, one in which the noise model is a von Mises (as per [24]), and
another one in which the noise model is a wrapped Gaussian (implemented as a mixture of Gaussians
with three components). We fitted each dataset to both models via maximum-likelihood estimation.
For the optimization, we used MATLAB’s fmincon function with 100 random restarts, plus one starting
point represented by the maximum-likelihood solution reported in [24, S2 Table]. Since both models have
the same number of parameters (and, moreover, all parameters have the same meaning), we can directly
compare differences in log likelihood without the need to account for model complexity. Across subjects,
we found a difference of log likelihood of 0.13±0.18 (mean ± S.E.M.), which is negligible evidence in favor
of the von Mises distribution. In fact, most of the evidence comes from a single subject; otherwise, eight
subjects slightly favor the wrapped normal, and other eight slightly favor the von Mises. These results
show that the two models are practically indistinguishable in real continuous estimation data. Note that
this would be even more so with our data, since we have only discrete (binary) responses.

In conclusion, these analyses support our choice of using (wrapped) normals as an equivalent alter-
native to von Mises distributions, and suggest that wrapped normals, approximated via three mixture
components, could be used more generally as a valid computational alternative to von Mises distributions.

4 Computational details

We describe in this section a number of computational and algorithmic details.

4.1 Integrals

Due to lack of analytical solutions, we computed all one-dimensional and two-dimensional integrals nu-
merically, via either Simpson’s or trapezoidal rule with a equi-spaced grid on the integration domain [26].
We had two types of integrals: integrals over xvis, xvest for marginalization over the noisy stimuli, and
integrals over svis and/or svest for computation of the observer’s decision rule (Eqs. S10, S11, S12 and
S13).
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For marginalization over noisy measurement xvis and xvest, we used a regular 401 × 401 grid for
which we adjusted the range of integration in each modality to up to 5 SD from the mean of the noisy
measurement distribution (or ±180◦, whichever was smaller). For large noise, we used wrapped normal
distributions, which turned out to have little effect due to our setup.

For computation of the decision rule, we assumed that observers believed, due to the experimental
setup and task instructions, that the movement direction would be forward, so limited to the ±90◦

range. We adjusted the integration grid spacing ∆s (hence the number of grid points) adaptively for each
parameter vector θ, defining

σmin(θ, cvis) = min {σ0vis(cvis), σ0vest, σprior}

∆s ≡ σmin(θ, cvis)

4
with

1

8
≤ ∆s ≤ 1

and we rounded ∆s to the lowest exact fraction of the form 1
m , with m ∈ N and 1 ≤ m ≤ 8. The above

heuristic afforded fast and accurate evaluation of the integrals, since the grid spacing was calibrated to
be smaller than the length scale of the involved distributions (measurement noise and prior).

Finally, we note that we tried other standard numerical integration methods which were ineffective.
Gauss-Hermite quadrature [26] led to large numerical errors because the integrand is discontinuous and
bounded, a very bad fit for a polynomial. Global adaptive quadrature methods (such as quad in MAT-
LAB, and other custom-made implementations) were simply too slow, even when reducing the requested
precision. We coded all two-dimensional numerical integrals in C (via mex files in MATLAB) for maximal
performance.

4.2 Optimization

For optimization of the log likelihood (maximum-likelihood estimation), we used Bayesian Adaptive Direct
Search (BADS [27]; https://github.com/lacerbi/bads). BADS follows a mesh adaptive direct search
(MADS) procedure that alternates poll steps and search steps. In the poll step, points are evaluated
on a (random) mesh by taking one step in one coordinate direction at a time, until an improvement is
found or all directions have been tried. The step size is doubled in case of success, halved otherwise. In
the search step, a Gaussian process is fit to a (local) subset of the points evaluated so far. Points to
evaluate during the search are iteratively chosen by maximizing the predicted improvement (with respect
to the current optimum) over a set of candidate points. Adherence to the MADS framework guarrantees
convergence to a (local) stationary point of a noiseless function under general conditions [28]. The basic
scheme is enhanced with heuristics to accelerate the poll step, to update the Gaussian process hyper-
parameters, to generate a good set of candidate points in the search step, and to deal robustly with noisy
functions. See [27] for details.

For each optimization run, we initialized our algorithm by randomly choosing a point inside a hyper-
cube of plausible parameter values in parameter space. We refined the output of each BADS run with a
run of patternsearch (MATLAB). To avoid local optima, for each optimization problem we performed
150 independent restarts of the whole procedure and picked the highest log likelihood value.

As a heuristic diagnostic of global convergence, we computed by bootstrap the value of the global
optimum we would have found had we only used nr restarts, with 1 ≤ nr ≤ 150. We define the ‘estimated
regret’ as the difference between the actual best value of the log likelihood found and the bootstrapped
optimum. For each optimization problem, we computed the minimum value n∗r for which the probability
of having an estimated regret less than 1 was 99% (n∗r ≡ ∞ if such nr does not exist). The rationale is that
if the optimization landscape presents a large number of local optima, and new substantially improved
optima keep being found with increasing nr, the bootstrapped estimated regret would keep changing with
nr, and n∗r would be 150 or ∞. For almost all optimization problems, we found n∗r � 150. This suggests
that the number of restarts was large enough; although no optimization procedure in a non-convex setting
can guarantee convergence to a global optimum in a finite time without further assumptions.

https://github.com/lacerbi/bads
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4.3 Markov Chain Monte Carlo (MCMC) sampling

As a complementary approach to maximum-likelihood model fitting, for each dataset and model we
calculated the posterior distribution of the parameters via MCMC (see main text).

We used a custom-written sampling algorithm that combines slice sampling [29] with adaptive di-
rection sampling [30].4 Slice sampling is a flexible MCMC method that, in contrast with the common
Metropolis-Hastings transition operator, requires very little tuning in the choice of length scale. Adaptive
direction sampling is an ensemble MCMC method that shares information between several dependent
chains (also called ‘walkers’ [31]) in order to speed up mixing and exploration of the state space. For
each ensemble we used 2(p + 1) walkers, where p is the number of parameters of the model. Walkers
were initialized to a neighborhood of the best local optima found by the optimization algorithm. Each
ensamble was run for 104 to 2.5 · 104 burn-in steps that were discarded, after which we collected 5 · 103

to 104 samples per ensemble.
At each step, our method iteratively selects one walker in the ensemble and first attempts an inde-

pendent Metropolis update. The proposal distribution for the independent Metropolis is a variational
mixture of Gaussians [32] fitted to a fraction of the samples obtained during burn-in via the vbgmm

toolbox for MATLAB.5 Note that the proposal distribution is fixed at the end of burn-in and does not
change thereafter, ensuring that the Markov property is not affected (although non-Markovian adaptive
MCMC methods could be applied; see [33]). After the Metropolis step, the method randomly applies
with probability 1/3 one of three Markov transition operators to the active walker: coordinate-wise slice
sampling [29], parallel-direction slice sampling [34], and adaptive-direction slice sampling [29, 30]. We
also fit a variational Gaussian mixture model to the last third of the samples at the end of the burnin
period, and we used the variational mixture as a proposal distribution for an independent Metropolis
step which was attempted at every step.

For each dataset and model, we ran three independent ensembles. We visually checked for convergence
the marginal pdfs and distribution of log likelihoods of the three sampled chains. For all parameters,
we computed Gelman and Rubin’s potential scale reduction statistic R and effective sample size neff [35]
using Simo Särkkä and Aki Vehtari’s psrf function for MATLAB.6 For each dataset and model, we
looked at the largest R (Rmax) and smallest neff (neffmin) across parameters. Large values of R indicate
convergence problems whereas values close to 1 suggest convergence. neff is an estimate of the actual
number of independent samples in the chains; a few hundred independent samples are sufficient for a coarse
approximation of the posterior [35]. Longer chains were run when suspicion of a convergence problem
arose from any of these methods. Samples from independent ensembles were then combined (thinned, if
necessary), yielding 1.5 · 104 posterior samples per dataset and model. In the end, average Rmax (across
datasets and models) was ∼ 1.002 (range: [1.000− 1.035]), suggesting good convergence. Average neffmin

was ∼ 8881 (range: [483 − 15059]), suggesting that we had obtained a reasonable approximation of the
posteriors.

4.4 Pareto smoothed importance sampling diagnostics

As our main metric of model comparison we computed the Bayesian leave-one-out cross-validation score
(LOO) via Pareto-smoothed importance sampling (PSIS; [36,37]); see Methods in the main text.

For a given trial 1 ≤ i ≤ Ntrials, with Ntrials the total number of trials, the PSIS approximation may
fail if the leave-one-out posterior differs too much from the full posterior. As a natural diagnostic, PSIS
also returns for each trial the exponent ki of the fitted Pareto distribution. If ki > 0.5 the variance of
the raw importance ratios distribution does not exist, and for ki > 1 also the mean does not exist. In

4URL: https://github.com/lacerbi/eissample.
5URL: https://github.com/lacerbi/vbgmm.
6URL: http://becs.aalto.fi/en/research/bayes/mcmcdiag/.

https://github.com/lacerbi/eissample
https://github.com/lacerbi/vbgmm
http://becs.aalto.fi/en/research/bayes/mcmcdiag/


14

the latter case, the variance of the PSIS estimate is still finite but may be large. In practice, Vehtari et
al. suggest to double-check trials with ki > 0.7 [37].

Across all our models and datasets, we found 2382 trials out of 1137100 with ki > 0.7 (0.21%). We
examined the problematic trials, finding that the issue was in almost all cases the discontinuity of the
observer’s decision rule. For all problematic trials the LOOi scores were compatible with the values
found for non-problematic trials, suggesting that the variance of the PSIS estimate was still within an
acceptable range. We verified on a subset of subjects that the introduction a softmax with small spatial
constant on the decision rule would remove the discontinuity and the problems with Pareto fitting, without
significantly affecting the LOOi itself.

4.5 Visualization of model fits

Let O(D) be a summary statistic of interest, that is an arbitrary function of a dataset D (e.g., the
vestibular bias for a given bin of svis and visual reliability level, as per Fig 4 in the main paper). For a
given model, we generated the posterior predictive distribution of the group mean of O by following this
bootstrap procedure:

• For m = 1, . . . ,M = 100 iterations:

– Generate a synthetic group of n = 11 subjects by taking n samples from the individual posterior
distributions of the model parameters.

– For each synthetic subject, generate a dataset Di of simulated responses to the same trials
experienced by the subject.

– Compute the group mean of the summary statistic across synthetic subjects, om = 1
n

∑n
i=1O (Di).

• Compute mean and standard deviation of om, which correspond to group mean and SEM of the
summary statistic.

The shaded areas shown in the model fits figures in the main text are the posterior predictive distributions
(mean ± SEM) of the summary statistics of interest.

4.6 Model validation and recovery

We performed sanity checks and unit tests to verify the integrity of our code.
To test the implementation of our models, for a given observer (given model and parameter vector

θ) we tested the data simulation code (functions that simulate responses; used e.g. to generate figures)
against the log likelihood code (functions that compute the log likelihood of the data). For a number of
subjects and models we verified that, at the maximum-likelihood solution, the log likelihood of the data
approximated via simulation (by computing the probability of the responses via simple Monte Carlo) was
∼ equal to the log likelihood of the data computed numerically. This ensured that our simulation code
matched the log likelihood code, being a sanity check for both.

We performed a model recovery analysis to validate the correctness of our analysis pipeline, and
assess our ability to distinguish models of interest using all tasks (‘joint fits’); see e.g. [13, 38]. For
computational tractability, we restricted our analysis to six observer models: the most likely four models
for each different causal inference strategy (to verify our ability to distinguish between strategies), and, for
the most likely model, its variants along the prior and noise factors (to verify whether we can distinguish
models along those axes). Thus, we consider the following models: Fix-X-E, Bay-X-E, Bay/FFu-X-I,
Fix/FFu-C-I, Fix-X-I, Fix-C-E (see main text for a description). We generated synthetic datasets from
each of these six models, for all three tasks jointly, using the same sets of stimuli that were originally
displayed to the 11 subjects. For each subject, we took four randomly chosen posterior parameter vectors
obtained via MCMC sampling (as described in Section 4.3), so as to ensure that the statistics of the
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simulated responses were similar to those of the subjects. Following this procedure, we generated 264
datasets in total (6 generating models × 11 subjects × 4 posterior samples). We then fit all 6 models to
each synthetic dataset, yielding 1584 fitting problems. For computational tractability, we only performed
maximum likelihood estimation (see Section 4.2, with 50 restarts), as opposed to MCMC sampling, whose
cost would be prohibitive for this number of fits. The analysis was otherwise exactly the same as that
used for fitting the subject data. We then computed the fraction of times that a model was the ‘best
fitting’ model for a given generating model, according to AICc (considering that AICc approximates LOO
in the limit of large data).
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Model recovery analysis. Each square represents the fraction of datasets that were ‘best’ fitted from
a model (columns), for a given generating model (rows), according to the AICc score. Bright shades of
gray correspond to larger fractions. The bright diagonal indicates that the true generating model was,
on average, the best-fitting model in all cases, leading to a successful model recovery.

We found that the true generating model was recovered correctly in 89.4% of the datasets on average
(see above). This finding means that our models are distinguishable in a realistic setting, and at the
same time validates the model fitting pipeline (as it would be unlikely to obtain a successful recovery in
the presence of a substantial coding error). Since our model recovery method differs from the procedure
used on subject data in the comparison metric (AICc via maximum-likelihood estimation, rather than
LOO via MCMC), we verified on subject data that AICc and LOO scores were highly correlated across
subjects [39]. The Spearman’s rank correlation coefficient between the two metrics was larger than 0.99
for each of the sixteen models in the joint fits, providing strong evidence that results of our model recovery
analysis would also transfer to the framework used for the subject data.
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5 Absolute goodness of fit

In this section we describe a general method to compute absolute goodness of fit, largely based on the
approach of [40].7

5.1 Computing the absolute goodness of fit

Let X be a dataset of discrete categorical data grouped in M independent batches with K classes each,
such that Xjk is the number of observations for the j-th batch and the k-th class. We define Nj =

∑
kXjk

the number of observations for the j-th batch.
We assume that observations are ordered and independent, such that the distribution of observa-

tions in each batch j is the product of Nj categorical distributions with parameters pj = (pj1, . . . , pjK)
(frequencies), such that the probability of the data is

p(X) =
M∏
j=1

K∏
k=1

p
Xjk

jk

with unknown vectors of frequencies pj .
We assume that we have a model of interest q that predicts frequencies qjk for the observations, with∑
k qjk = 1 for 1 ≤ j ≤M . As a reference, we consider the chance model q0 with frequencies q0

jk = 1/K.
We define the absolute goodness of fit of q as

g (q) = 1− KL (p||q)
KL (p||q0)

. (S15)

where KL (p||q) is the Kullback-Leibler divergence (also known as relative entropy) between a ‘true’
distribution p and an ‘approximating’ distribution q.

Importantly, g (q) = 0 when a model performs at chance, and g (q) ≤ 1, with g (q) = 1 only when
the model matches the true distribution of the data. In other words, g (q) represents the fractional
information gain over chance. Note that g (q) can be negative, in the unfortunate case that a model
performs worse than chance.

As another important reference, we recommend to also compute the absolute goodness of fit g (q̄)
of the histogram model q̄, with frequencies defined from the empirical frequencies across batches as
q̄jk =

∑M
l=1Xlk/N , for 1 ≤ j ≤M and N =

∑
j Nj . A comparison between g (q) and g (q̄) is informative

of how better the current model is than a simple histogram of categorical observations collapsed across
batches. In some circumstances, the chance model can be a straw model, whereas the histogram model
may represent a more sensible reference point.

In order to estimate Eq. S15, we need to compute the relative entropy KL (p||q) between the data
and a given distribution q,

KL (p||q) =Ep [log p]− Ep [log q]

=−H(p) +H(p, q)
(S16)

where the first term is the (negative) entropy of the data, and the second term is called the cross-entropy
between p and q. We will show in the following sections that the negative cross-entropy is approximated
by the cross-validated log likelihood of the data, LLCV(q).

Combining Eq. S15 with our estimates of Eq. S16, we obtain

g (q) ≡ 1− H(p) + LLCV(q)

H(p) + LLchance(q)
. (S17)

7URL: https://github.com/lacerbi/gofit.

https://github.com/lacerbi/gofit
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We show next how to estimate the entropy of the data, and prove that the negative cross-entropy between
p and q is approximated by the cross-validated log likelihood.

5.2 Entropy of the data

As noted in [40], the näıve plug-in estimator of the entropy of the data leads to a biased estimate of
the entropy, and this bias can be substantial when the data are sparse (a few observations per batch).
Instead, we use the Grassberger estimator of the entropy [41],

H(p) =

M∑
j=1

H(pj) ≈
M∑
j=1

NjĤG(Xj) (S18)

where the Grassberger estimator of the entropy per trial is defined as

ĤG(Xj) = G (Nj)−
1

Nj

K∑
k=1

XjkG (Xjk) (S19)

and G (h) for h ∈ N are Grassberger’s numbers defined as

G(0) = 0, G(h) = ψ (h) +
1

2
(−1)

h

[
ψ

(
h+ 1

2

)
− ψ

(
h

2

)]
for h > 0, (S20)

where ψ is the digamma function.
That is, our estimate of the negative entropy is

−H(p) ≈ −
M∑
j=1

Nj

[
G (Nj)−

1

Nj

K∑
k=1

XjkG(Xjk)

]
, (S21)

which is the same as Eq. 21 in [40], when restricted to the binomial case (K = 2), and after correcting
for a typo (N in the denominator of their equation should read as Nj).

5.3 Cross-entropy

The estimated cross-entropy is

Ĥ(p, q) = −Ep [log q] = −
M∑
j=1

NjEpj [log qj ] = −
M∑
j=1

NjEp̂j
[log qj ] (S22)

where in a slight abuse of notation we denoted with pj (resp., qj) the categorical distributions associated to
the data (resp., model) for the j-th batch. Crucially, since the expectations only involve q, p̂jk ≡ Xjk/Nj
is an unbiased estimator of pjk.
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Eq. S22 becomes

−
M∑
j=1

NjEp̂j
[log qj ] =−

M∑
j=1

NjEp̂j

[
log qx1

j1 · · · q
xK

jK

]

=−
M∑
j=1

Nj

K∑
k=1

Ep̂j
[xk] log qjk

=−
M∑
j=1

K∑
k=1

Nj p̂jk log qjk

=−
M∑
j=1

K∑
k=1

Xjk log qjk,

(S23)

which is the negative log likelihood of the model, −LL(q).
Note that typically we also need to estimate the model parameters, and computing Eq. S23 on the

same dataset used to estimate parameters will yield a biased estimate of the log likelihood (see e.g., [42]).
Shen and Ma suggest to obtain an independent estimate of the log likelihood of the model via cross-
validation, LLCV [40]. According to their method, model parameters are estimated on half of the data,
and the log likelihood of the model (and also the entropy of the data) is evaluated with the other half
of the data. As an improvement over their method, we advocate to estimate the expected log likelihood
via leave-one-out (LOO) cross-validation score obtained via MCMC [37]. This will produce an unbiased
estimator of the expected log likelihood, and allows to use all the available data to obtain a more robust
estimate of the relative entropy.

In conclusion, our estimate for the cross-entropy is

Ĥ(p, q) = −LLCV(q), (S24)

with LLCV(q) computed as the LOO score of the model, and it corresponds to Eq. 19 in [40].

6 LOO scores for all models

In this section we report tables of LOO scores for all models and subjects, which were used to perform
group Bayesian Model Selection, the model comparison technique adopted in the main text. For each
subject, LOO scores are shown relative to the LOO of the model with highest mean LOO across subject,
which is printed in boldface. Models are ranked according to average LOO.

Summing (equivalently, averaging) LOO scores across subjects is a simple ‘fixed-effect’ model compar-
ison analysis, in which all subjects are believed to belong to the same model. Results of the fixed-effect
analysis differ in details from the group Bayesian Model Selection, but the overall qualitative findings are
analogous.

6.1 Unity judgment task

Model S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean ± SE
Bay-X-I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
Bay-X-E −22.1 4.5 −12.7 −29.7 22.2 −24.7 −1.8 −2.6 1.7 35.9 −0.4 −2.7± 5.9
Fix −31.6 12.5 −12.9 0.7 −12.4 −18.8 1.8 12.3 −2.8 10.2 −4.8 −4.2± 4.2
Bay-C-I −0.3 4.6 0.4 −11.7 −11.9 2.2 −0.4 −0.8 −2.8 −25.6 −1.8 −4.4± 2.6
Fix-C −30.6 13.2 −10.5 2.3 −21.1 −18.0 1.1 14.4 −2.6 −29.0 −7.6 −8.0± 4.7
Bay-C-E −26.4 −18.7 −14.2 −29.8 16.0 −41.9 −1.6 −17.0 −1.9 12.5 −2.9 −11.4± 5.4
SFu −272.4 −119.9 −245.8 −122.5 −112.1 −154.5 −272.4 −120.9 −250.2 −122.0 −117.5 −173.7± 21.1
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6.2 Bimodal inertial discrimination task

Model S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean ± SE
Bay-X-E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
Fix-X-E −0.9 0.5 −2.2 −13.0 −0.8 0.8 −0.6 0.4 0.3 3.4 1.5 −1.0± 1.3
FFu-X-I −0.7 0.9 −3.5 −11.3 0.4 1.3 1.2 1.6 1.5 −12.3 1.1 −1.8± 1.6
Fix-X-I −0.9 2.0 −3.2 −11.5 0.6 1.3 0.6 0.0 0.7 −12.5 1.1 −2.0± 1.6
FFu-X-E −0.2 0.9 −3.6 −10.2 0.6 1.5 0.9 1.5 1.4 −18.8 1.2 −2.3± 2.0
Fix-C-E −9.8 −3.7 0.1 −18.7 −0.9 −2.5 −7.1 1.1 −2.3 3.9 0.4 −3.6± 1.9
Bay-C-E −10.5 0.3 −0.6 −5.7 0.6 −1.9 −11.8 0.1 −1.8 −5.4 −3.2 −3.6± 1.3
Bay-X-I −3.1 −2.6 −5.7 −13.0 −1.6 −1.5 0.2 −0.8 0.2 −15.5 1.4 −3.8± 1.7
FFu-C-E −20.1 −22.1 −9.9 −34.7 −14.8 −21.9 −31.9 −6.0 −2.4 −57.7 −2.1 −20.3± 5.0
FFu-C-I −20.2 −22.1 −9.9 −34.8 −14.8 −21.8 −31.9 −6.0 −2.6 −57.7 −2.2 −20.3± 5.0
Fix-C-I −20.2 −22.1 −9.9 −34.8 −14.8 −21.9 −30.6 −6.8 −3.1 −57.8 −2.3 −20.4± 4.9
Bay-C-I −19.6 −21.6 −10.4 −34.7 −15.9 −22.7 −32.3 −6.2 −2.8 −58.2 −2.8 −20.6± 5.0

6.3 Joint fits

Model S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Mean ± SE
Fix-X-E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
Fix-X-I 7.3 −7.2 −4.4 31.9 −16.1 23.7 −40.6 −26.6 −38.6 −20.4 2.4 −8.0± 7.1
Fix/FFu-X-E −14.8 −19.7 −15.4 4.8 −3.4 0.5 −42.6 −4.3 −14.8 −8.9 2.4 −10.6± 4.0
Fix-C-E 0.4 −9.2 −1.9 −14.3 −41.9 −7.9 −3.5 0.9 −6.5 −46.7 −10.7 −12.8± 4.9
Fix/FFu-X-I −26.6 −19.7 −22.5 4.8 −2.4 0.5 −52.4 −4.2 −59.7 −2.9 2.3 −16.6± 6.7
Bay-X-E 17.1 −34.2 −6.2 −31.3 −25.8 −20.6 −9.5 −128.6 12.7 12.3 −6.2 −20.0± 12.1
Bay/FFu-X-E −20.8 −39.0 −25.3 0.5 10.8 −14.9 −42.9 −127.0 −40.8 3.7 1.2 −26.8± 11.6
Fix/FFu-C-E −14.2 −21.0 −17.9 −20.5 −47.6 −6.0 −44.5 −3.3 −19.0 −103.6 −8.5 −27.8± 8.7
Fix-C-I −3.6 −32.0 −15.8 −14.1 −59.5 2.1 −85.5 −25.2 −59.0 −94.9 −9.4 −36.1± 10.1
Fix/FFu-C-I −25.6 −21.1 −22.0 −20.6 −47.7 −6.1 −86.0 −3.4 −59.1 −103.7 −8.6 −36.7± 10.1
Bay-C-E 2.7 −73.1 −29.5 −44.2 −33.6 −74.9 −16.1 −191.4 −6.7 −12.3 −26.4 −45.9± 16.4
Bay/FFu-C-E −36.4 −77.3 −47.1 −31.0 −15.4 −45.3 −90.7 −206.7 −72.9 −74.3 −11.8 −64.4± 16.2
Bay-X-I −356.3 −128.2 −193.6 −204.0 −91.3 −35.6 −177.3 −235.6 −298.7 −105.2 −6.3 −166.6± 32.2
Bay-C-I −462.0 −222.2 −318.1 −231.3 −158.8 −77.6 −319.6 −338.0 −488.1 −259.2 −51.2 −266.0± 42.1
Bay/FFu-X-I −872.8 −416.4 −544.9 −589.5 −304.5 −424.8 −555.4 −397.0 −593.0 −272.0 −53.7 −456.7± 64.2
Bay/FFu-C-I −888.7 −445.3 −556.3 −611.2 −340.1 −441.8 −551.3 −396.2 −625.7 −351.2 −69.8 −479.8± 62.6
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